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Organocatalytic asymmetric 5-hydroxypyrrolidine synthesis:
a highly enantioselective route to 3-substituted proline derivatives
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Abstract—The highly enantioselective organocatalytic tandem reaction between 2-acylaminomalonates and a,b-unsaturated alde-
hydes is presented. The reaction is a direct entry to 5-hydroxypyrrolidines and 3-substituted proline derivatives, which are furnished
in high yields and 90–99% ee.
� 2007 Elsevier Ltd. All rights reserved.
Substituted chiral proline derivatives are constituents
of natural products and pharmaceutically active com-
pounds such as protease inhibitors and antiviral com-
pounds.1 Moreover, proline derivatives are important
metal-free catalysts for asymmetric transformations.2

Proline derivatives are also used to induce conforma-
tional constraints into peptides.3 Thus, catalytic asym-
metric methods, which rely on 1,3-dipolar additions,
have been developed for their preparation.4

Racemic 5-hydroxypyrrolidine derivatives are important
building blocks for the synthesis of optically active pro-
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line derivatives.5 For example, they are obtained by
resolution.5d However, there is only one report, from
Merck, of a catalytic enantioselective synthesis of
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5-hydroxyproline derivatives that gives the compounds
in up to 62% ee.6

In the research field of organocatalysis, amine-catalyzed
domino, cascade and tandem reactions were recently
developed.2e,7–9 Moreover, chiral amines catalyze the
asymmetric synthesis of chiral pyrrolidine derivatives.10

In this context, we recently found that chiral pyrrol-
idines catalyze the formation of chiral pyrrolidine
derivatives via an asymmetric multicomponent [C +
NC + CC] reaction between aldehydes, 2-aminomalo-
nates, and enals (Eq. 1).10b The reaction between 2-
aminomalonate and the enal without the aldehyde
component gave exclusively the corresponding ylide
(Eq. 2).

However, previous work6,9 and retrosynthetic analysis
suggested a possibility to completely change the reaction
pathway and obtain optically active 5-hydroxypyrrol-
idines by acylation of 2-aminomalonates (Scheme 1).
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Scheme 1. A plausible reaction pathway for a chiral amine-catalyzed enantioselective formation of 5-hydroxyproline derivatives.

Table 1. Catalyst screen for the reaction between 1a and 2a
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Entry Catalyst Solvent Time (h) Conv.a (%) a/ba eeb (%)

1 4 MeOH 14 0 — —
2 5 MeOH 14 0 — —
3 6 MeOH 14 75 5:1 5
4 7 MeOH 14 100 5:1 46
5 8 CHCl3 72 <5 n.d. n.d.
6 7 CHCl3 48 100c 5:1c 30c

7 7 DMF 14 0 — —
8 7 i-PrOH 44 100 5:1 20
9 7 EtOH 14 100 5:1 37

10 7 MeOH 72 100d 5:1d 65d

11 7 MeOH 144 100e 5:1e 97e

a Determined by NMR analysis.
b Determined by chiral-phase HPLC analyses.
c 1 equiv TEA was used as an additive.
d Reaction run at 4 �C.
e Reaction run at �20 �C.

8696 R. Rios et al. / Tetrahedron Letters 48 (2007) 8695–8699
Thus, we envisioned that the chiral amine-catalyzed
tandem reaction between 2-acylaminomalonates and
enals would be a simple asymmetric entry to 5-hydroxy-
pyrrolidines where the subsequent intramolecular



Table 2. Scope of the organocatalytic tandem reaction
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Entry R1 R Prod. Yielda (%) a/bb eec (%)

1 Me Ph 3a 74 5:1 97
2 Me 4-BrC6H4 3b 67 5:1 95
3 Me 4-O2NC6H4 3c 72 6:1 99
4 Me 4-NCC6H4 3d 77 5:1 96
5 Me 2-Naphth 3e 76 5:1 90
6 Ph Ph 3f 71 >10:1 99
7 Ph 4-O2NC6H4 3g 70 >10:1 99

a Isolated yield of the pure product 3 after silica gel chromatography.
b Determined by NMR analysis of the crude reaction mixture.
c Determined by chiral-phase HPLC analyses.
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Figure 1. The results from the NOE experiments on 3g.
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hemiaminal formation would be an important driving
force for product formation (Scheme 1). Moreover,
our recent work on the tandem synthesis of 5-hydroxy-
isoxazolidines indicated that this strategy could be
possible.11

Herein, we present a highly enantioselective catalytic
route to the synthesis of 5-hydroxyproline derivatives
(67–77% yield, 90–99% ee) that are readily converted
into the corresponding 3-substituted proline derivatives
(up to >25:1 dr).

In an initial catalyst screen for the reaction between
2-acetylaminomalonate 1a (0.25 mmol) and cinnamal-
dehyde 2a (0.50 mmol), we found that simple chiral pyr-
rolidines such as 6 and 7 catalyzed the enantioselective
formation of 5-hydroxypyrrolidine 3a (Table 1). How-
ever, amines 4, 5, and 8 did not catalyze the formation
1a + 2a

7

NHO

CO2Et

CO2Et

O

(20 mol%)

3a: 74% yield; 97% ee

N

11a: 94% Yield

CO2H
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Scheme 2. Enantioselective synthesis of 3-substituted proline derivatives 10a
of 3a under our reaction conditions. The protected
chiral diamine 6 and prolinol 712 catalyzed the forma-
tion of 3a with poor and moderate enantioselectivity,
respectively (entries 3 and 4). Thus, the reaction was
further investigated using chiral amine 7 as the catalyst.

We found that the reaction was the fastest in polar pro-
tic solvents such as MeOH, i-PrOH, and EtOH. The
reaction rate decreased at lower temperature. However,
to our delight, excellent enantioselectivity was achieved
(entry 11). Thus, we decided to investigate the scope of
the catalytic asymmetric tandem reaction at �20 �C
using MeOH as the solvent (Table 2).13

The organocatalytic enantioselective tandem reactions
were highly enantioselective at �20 �C and the corres-
ponding 5-hydroxypyrrolidines 3 were isolated in 67–
77% yield with 90–99% ee. Notably, the reactions with
2-benzoylaminomalonate 1b led to increased enantio-
selectivity of the reaction and gave the corresponding
products 3 in high yields with 99% ee (entries 6 and 7).
Moreover, the larger phenyl group increased the a/b
ratio of hemiaminals 3. The relative stereochemistry of
5-hydroxypyrrolidines was determined by 1D NOE
experiments on compound 3g (Fig. 1).
Et3SiH, TFA, rt
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The organocatalytic reaction was readily scaled up
and gave access to a variety of proline derivatives. For
example, optically active 3-substituted proline deriva-
tives such as 9a were accessible using the chiral amine
7-catalyzed reaction (Scheme 2).

Thus, reductive deoxygenation of 5-hydroxypyrrolidine
3a gave the corresponding N-protected 3-phenylpyrrol-
idine 9a in 94% yield.14 Moreover, a highly diastereo-
selective decarboxylation/epimerization/ester hydrolysis
sequence on 9a gave proline 10a in 62% yield as a single
diastereoisomer (>25:1 dr). It should be mentioned that
the cis-proline derivative of 10a was also readily avail-
able by decarboxylation of 9a.5d Thus, both diastereo-
isomers of the 3-substituted proline derivatives are
available. Changing the protective group from an acetyl
group to a Boc group gave the known proline 11a
in 94% yield ready to be used in peptide synthesis.
Comparison with the literature revealed that the abso-
lute configuration of 11a at C3 was S and C2 was R
(½a�25

D �34.7 (c 0.5, CHCl3)), lit. (½a�25
D �35.9 (c 1.0,

CHCl3)15).16 Thus, efficient shielding of the Re-face of
the chiral iminium intermediate by the bulky aryl groups
of 7 leads to stereoselective Si-facial nucleophilic conju-
gate attack on the b-carbon of 1 (Scheme 1). This is
in accordance with other amine-catalyzed reactions
between malonates and enals.9 Next, the released N-pro-
tected aminoaldehyde intermediate undergoes favored
hemiaminal formation to give 5-hydroxypyrrolidine 3.

In summary, we have reported a highly enantioselective
organocatalytic synthesis of 5-hydroxypyrrolidines,
which are formed in high yields with 90–99% ee. More-
over, the organocatalytic tandem reaction represents a
versatile asymmetric entry to different proline deriva-
tives. Mechanistic studies, synthetic applications of
this transformation, and the development of other
enantioselective tandem reactions are ongoing in our
laboratory.
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Eriksson, L.; Córdova, A. Angew. Chem., Int. Ed. 2005,
44, 4877; (h) Enders, D.; Hüttl, M. R. M.; Grondal, C.;
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